Nanobiotechnology could aid in developing honey-based natural wound healing agents. In the present work, stingless bee honey (SBH) loaded alginate nanoparticles (H-ALG NPs) were formulated with an ionic crosslinking method and thoroughly characterized. The average size of the H-ALG NPs was observed to be 312 ± 4.32 nm, with 0.112 ± 0.04 PDI and - 21.2 ± 0.29 mV Zeta potential. TEM and SEM imaging confirmed the presence of spherical-shaped NPs. Encapsulation efficiency and loading capacity were observed to be 84.74% and 23.12%, respectively. Further, H-ALG NPs showed dose-dependent radical scavenging activity against DPPH with IC50 23.20 compared to 35.99 mg/mL for SBH, suggesting antioxidant potential. The H-ALG NPs were also tested for cytotoxicity on a human dermal fibroblast cell line and exhibited low toxicity with a higher IC50 than SBH (970.07 vs. 755.67 μg/mL; P < 0.001