Since the late 1980s, researchers have prepared inorganic nanoparticles of many typesincluding elemental metals, metal oxides, metal sulfides, metal selenides, and metal tellurideswith excellent control over size and shape. Originally many researchers were primarily interested in exploring the quantum size effects predicted for such materials. Applications of inorganic nanomaterials initially centered on physics, optics, and engineering but have expanded to include biology. Many current nanomaterials can serve as biochemical sensors, contrast agents in cellular or tissue imaging, drug delivery vehicles, or even as therapeutics.In this Account we emphasize that the understanding of how nanomaterials will function in a biological system relies on the knowledge of the interface between biological systems and nanomaterials, the nano-bio interface. Gold nanoparticles can serve as excellent standards to